The ContinousDamage
class manages all continuous damage evolution laws. When a new law is defined, the evolution of the damage variable $\delta D$ must be defined, and so must be its derivatives with respect to pressure, plastic strain and damage.
Laws implemented in Metafor
Lemaitre & Chaboche damage model [1,2]. $$ \dot D = \left(\dfrac{\bar \sigma^2 R_\nu}{2ES\left(1-D\right)^2}\right)^s \dot \varepsilon^{pl} \mbox{, if } \varepsilon^{pl} > \varepsilon^{pl}_D \mbox{, and } \eta > \eta_D $$
where the triaxiliaty function is defined as:
$$ R_\nu = \dfrac{2}{3}\left(1+\nu\right) + 3\left(1-2\nu\right) \left(\dfrac{p}{\bar\sigma}\right)^2 $$
where $ p $ is the pressure, $ \bar \sigma $ is Von Mises stress and $\eta$ is the stress triaxiality ratio.
Name | Metafor Code | Dependency |
---|---|---|
Young Modulus $ E $ | LEMAITRE_YOUNG | TO/TM |
Poisson Ratio $\nu$ | LEMAITRE_NU | TO/TM |
Exponent $ s $ | LEMAITRE_SMALL_S | TO/TM |
Coefficient $ S $ | LEMAITRE_BIG_S | TO/TM |
Plastic strain threshold $ \varepsilon^{pl}_D $ | LEMAITRE_EPL_THRESHOLD | TO/TM |
Triaxiality threshold $ \eta_D $ | LEMAITRE_TRIAX_THRESHOLD | TO/TM |
This law is designed for bone remodeling (extracted from Doblaré's law, which he uses only in elasticity). Damage evolution depends mostly on damage, surface available for remodeling and a “remodelling rate” function, which depends on stress state.
$$ \dot d =f(d, \rho_0)kS_v(d)\dot r $$
where
$S_v(d)$ is the surface per unit volume available for remodeling (polynomial of degree 5 in $d$)
and where
$$ \begin{align*} \dot r &= \ cf_1(d, \rho_0)g_f&\text{ if }g_f>0 \\ \dot r &= -cf_1(d, \rho_0)g_r&\text{ if }g_r>0 \end{align*} $$ with $$ \begin{eqnarray*} g_f &=& N^{1/4}u(\sigma)-(1+\omega)\psi \\ g_r &=& \dfrac{1}{N^{1/4}u(\sigma)}-\dfrac{1}{(1-\omega)\psi} \end{eqnarray*} $$ $ f, f_1 $ are functions in the damage variable, $ u $ is a measure of the elastic strain energy.
Name | Metafor Code |
---|---|
Coefficient $ N $ | BONE_REMOD_N |
Percentage of available surface $ k $ | BONE_REMOD_K |
Reference elastic strain energy $ \psi $ | BONE_REMOD_PSI |
Half width of the dead zone $ \omega $ | BONE_REMOD_OMEGA |
Remodeling speed $ c $ | BONE_REMOD_C |
Density of undamaged material$ \rho_0 [kg/m^3] $ | BONE_REMOD_MASS_DENSITY |
This law is defined for the remodeling of the alveolar bone. Damage evolution also depends on pressure.
$$ \dot d =f(d, \rho_0)kS_v(d)\dot r $$
where
$S_v(d)$ is the surface per unit volume available for remodeling (polynomial of degree 5 in $d$)
$$ \begin{align*} \dot r &= cf_1(d, \rho_0)g_f &\text{ if }g_f>0 \text{ and } p>0 \\ \dot r &= -cf_1(d, \rho_0)g_f &\text{ if }g_f>0 \text{ and } p<0 \\ \dot r &= -cf_1(d, \rho_0)g_r &\text{ if }g_r>0 \end{align*} $$ with $$ \begin{eqnarray*} g_f &=& N^{1/4}u(\sigma)-\psi \\ g_r &=& \dfrac{1}{N^{1/4}u(\sigma)}-\dfrac{1}{\psi} \end{eqnarray*} $$ $ f, f_1 $ are functions in the damage variable, $ u $ is a measure of the elastic strain energy.
Name | Metafor Code |
---|---|
Coefficient $ N $ | BONE_REMOD_N |
Percentage of available surface $ k $ | BONE_REMOD_K |
Reference elastic strain energy $ \psi $ | BONE_REMOD_PSI |
Remodeling speed $ c $ | BONE_REMOD_C |
Density of undamaged material $\rho_0 [\mbox{kg}/\mbox{m}^3] $ | BONE_REMOD_MASS_DENSITY |
Same law than the previous one, except that remodeling constants are different in formation and resorption.
$$
\begin{align*}
\dot r &= c_ff_1(d, \rho_0)g_f\;\;&\text{ if }g_f>0\;\;\text{ and } p>0 \\
\dot r &= -c_rf_1(d, \rho_0)g_f\;\;&\text{ if }g_f>0\;\;\text{ and } p<0 \\
\dot r &= -c_rf_1(d, \rho_0)g_r\;\;&\text{ if }g_r>0
\end{align*}
$$
with
<note>
some definitions are lacking
</note>
...
=== Parameters ===
^ Name ^ Metafor Code ^
| Coefficient $ N $ | BONE_REMOD_N
|
Percentage of available surface $ k $ | BONE_REMOD_K |
Reference elastic strain energy $ \psi $ | BONE_REMOD_PSI |
Remodeling speed $ c_f $ | BONE_REMOD_CF |
Remodeling speed $ c_r $ | BONE_REMOD_CR |
Density of undamaged material $\rho_0 [\mbox{kg}/\mbox{m}^3] $ | BONE_REMOD_MASS_DENSITY |
$$ \dot D = D_C\dfrac{\dot \varepsilon^{pl}}{\varepsilon^{pl}_f-\varepsilon^{pl}_D} \mbox{ if } \varepsilon^{pl} > \varepsilon^{pl}_D $$
where the plastic strain at failure is defined as:
$$ \varepsilon^{pl}_f = \left(D_1 + D_2 \exp\left(D_3\dfrac{p}{\bar\sigma}\right)\right) \left(1+\ln\dfrac{\dot \varepsilon^{pl}}{\dot \varepsilon^{pl}_0}\right)^{D_4} \left(1-D_5\dfrac{T-T_{room}}{T_{melt}-T_{room}}\right) $$
where $p$ is the pressure and $ \bar \sigma $ the Von Mises stress.
Name | Metafor Code | Dependency |
---|---|---|
$ D_1 $ | LANGSETH_D1 | TO/TM |
$ D_2 $ | LANGSETH_D2 | TO/TM |
$ D_3 $ | LANGSETH_D3 | TO/TM |
$ D_4 $ | LANGSETH_D4 | TO/TM |
$ D_5 $ | LANGSETH_D5 | TO/TM |
Damage $ D_C $ | LANGSETH_DC | TO/TM |
$ \dot \varepsilon^{pl}_0 $ | LANGSETH_EPSP0 | TO/TM |
Room temperature $ T_{room} $ | LANGSETH_ROOM | - |
Melting temperature $ T_{melt} $ | LANGSETH_TMELT | - |
Plastic strain threshold $ \varepsilon^{pl}_D $ | LANGSETH_EPL_THRESHOLD | - |
Damage evolution law following Geers's models. Several laws actually exist, all of the same author, which is why they are gathered in a same class. If the full Geers's model, damage is integrated globally on the structure, and not locally at each integration point. I can give references if needed. All models are based on a characteristic quantity, $\kappa$.
Name | Metafor Code | Dependency |
---|---|---|
Initiation value $ \kappa_i $ | GEERS_KAPPA_I | TO/TM |
Critical value $ \kappa_c $ | GEERS_KAPPA_C | TO/TM |
Power law. $\kappa$ is the equivalent plastic strain $\varepsilon^{pl}$:
$$ D = 1 - \left(\dfrac{\kappa_i}{\kappa}\right)^{n_1} \left(\dfrac{\kappa-\kappa_i}{\kappa_c-\kappa_i}\right)^{n_2} \mbox{ if } \kappa_i\leq\kappa\leq\kappa_c $$
Name | Metafor Code | Dependency |
---|---|---|
$ n_1 $ | GEERS_N1 | TO/TM |
$ n_2 $ | GEERS_N2 | TO/TM |
Exponential law. $\kappa$ is the equivalent plastic strain $\bar\varepsilon^{pl}$
$$ D = 1 - \exp\left(-\beta\left(\kappa-\kappa_i\right)\right) $$
Name | Metafor Code | Dependency |
---|---|---|
$ \beta $ | GEERS_BETA | TO/TM |
Hyperbolic tangent. $\kappa$ is the equivalent plastic strain $\varepsilon^{pl}$
$$ D = \dfrac{1}{2\tanh\left(3\right)} \left(\tanh\left(6\dfrac{\kappa-\kappa_i}{\kappa_c-\kappa_i}-3\right)+\tanh\left(3\right)\right) $$
Name | Metafor Code | Dependency |
---|---|---|
Initiation value $ \kappa_i $ | GEERS_KAPPA_I | TO/TM |
Critical value $ \kappa_c $ | GEERS_KAPPA_C | TO/TM |
Law linear. $\kappa$ is a function of the stress triaxiality and the equivalent plastic strain $\varepsilon^{pl}$
$$ \dot{\kappa} = C\left<1+A\dfrac{p}{\bar\sigma}\right> \left(\varepsilon^{pl}\right)^B \dot\varepsilon^{pl} $$ where $p$ is the pressure, and $ \overline{\sigma} $ the Von Mises stress. $\langle .\rangle$ are Macaulay symbols( $\langle \alpha\rangle = \alpha $ if $ \alpha \ge 0 $ and $ 0 $ otherwise)
$$ \dot D = \dfrac{\dot\kappa}{\kappa_c-\kappa_i} $$
Name | Metafor Code | Dependency |
---|---|---|
$ A $ | GEERS_A | TO/TM |
$ B $ | GEERS_B | TO/TM |
$ C $ | GEERS_C | TO/TM |
[1] Lemaitre J. A continuous damage mechanics model for ductile fracture. Journal of Engineering Materials and Technology 1985;107:9–83.
[2] Chaboche JL. Description thermodynamique et phénoménologique de la viscoélasticité cyclique avec endommagement. PhD Thesis, Université Pierre et Marie Curie, Paris VI, 1978.
[3]
[4]