The ContinousAnisoDamage
class manages the continuous orthotropic damage evolution laws. When defining a new law, the evolution of the damage variable $\delta H$ must be defined, and so must be its derivatives with respect to pressure, plastic strain and damage.
Laws implemented in Metafor
A dummy testing all possible variations of the damage variable.
Anisotropic extension of Lemaitre isotropic damage law
The damage tensor is denoted $D$
$$ \dot D = \left(\dfrac{\tilde\sigma_{eq}^2 R_\nu}{2ES}\right)^s |D^{pl}| \mbox{ if } \varepsilon^{pl} > \varepsilon^{pl}_D $$
where $|D^{pl}|$ is a tensor with the same eigenvectors as $D^{pl}$, and eigenvalues equal to the absolute value of $D^{pl}$ eigenvalues. The triaxiality function is defined as :
$$ R_\nu = \dfrac{2}{3}\left(1+\nu\right) + 3\left(1-2\nu\right) \left(\dfrac{p}{\sigma_{eq}}\right)^2 $$
where $ p $ is the pressure and $ \sigma_{eq} $ Von Mises stress.
Name | Metafor Code | Dependency |
---|---|---|
Young Modulus $ E $ | LEMAITRE_E | TM |
Poisson ratio $\nu$ | LEMAITRE_NU | TM |
Exponent $ s $ | LEMAITRE_SMALL_S | TM |
Coefficient $ S $ | LEMAITRE_BIG_S | TM |
Plastic strain threshold $ \varepsilon^{pl}_D $ | LEMAITRE_EPL_THRESHOLD | TM |
This law is used for bone remodeling (extracted from Doblaré's law, used only in elasticity). Damage variation depends mostly on damage, surface available for remodeling and a “remodelling rate” function, which itself depends on stress state.
$$ \dot H =f(H, \rho_0)kS_v(d_h)\dot r $$
where
$S_v(d_h)$ is the surface per unit volume available for remodeling (polynomial of degree 5 in $d$), and $d_h$ is the average damage ($d_h = d_{ii}/3$)
\begin{align*} \dot r &= c_f(H, \rho_0)g_f\;\;&\text{ if }g_f>0 \\ \dot r &= -c_r(H, \rho_0)g_r\;\;&\text{ if }g_r>0 \end{align*}
with
\begin{align*} g_f &= N^{1/4}u(\sigma)-(1+\omega)\psi\\ g_r &= -N^{1/4}u(\sigma)+(1-\omega)\psi \end{align*}
$ u $ is a measure of the elastic strain energy. - cfr p131-132 my thesis
Name | Metafor Code | Dependency |
---|---|---|
Coefficient $ N $ | BONE_REMOD_N | |
Percentage of available surface $ k $ | BONE_REMOD_K | |
Reference elastic strain energy $ \psi $ | BONE_REMOD_PSI | |
Half width of the dead zone $ \omega $ | BONE_REMOD_OMEGA | |
Remodeling speed $ c_f $ | BONE_REMOD_CF | |
Remodeling speed $ c_r $ | BONE_REMOD_CR | |
Density of undamaged material $ \rho_0 $ | BONE_REMOD_MASS_DENSITY | |
“weight” of anisotropy, $ \eta $ | BONE_REMOD_ETA |
This law is defined for the remodeling of the alveolar bone. Damage evolution also depends on pressure. cfr p140-142 of my thesis