Metafor

ULiege - Aerospace & Mechanical Engineering

User Tools

Site Tools


doc:user:elements:volumes:hyper_functionbased

This is an old revision of the document!


Function Based Materials

FunctionBasedHyperMaterial

Description

Hyperelastic law, using a Cauchy stress tensor $\boldsymbol{\sigma}$, stress in the current configuration.

(Quasi-)incompressibility is treated by a volumetric/deviatoric multiplicative split of the deformation gradient, i.e. $\bar{\mathbf{F}} = J^{-1/3}\mathbf{F}$. Hence the deviatoric potential is based on reduced invariants of $\bar{\mathbf{b}} =\bar{\mathbf{F}}\bar{\mathbf{F}}^T $.

The strain-energy density function $W$ is expressed as the sum of a deviatoric $W_{dev}$ and volumetric $W_{vol}$ contribution: $$ W\left(\bar{I}_1,\bar{I}_2, J, \bar{I}_4, \bar{I}_5 \right) = W_{dev}\left(\bar{I}_1,\bar{I}_2, J, \bar{I}_4, \bar{I}_5 \right) + W_{vol}\left( J \right) = W_{dev}\left(\bar{I}_1,\bar{I}_2, J, \bar{I}_4, \bar{I}_5 \right) + k_0 \mathcal{f}\left( J \right) $$

The deviatoric potential $W_{dev}$ is defined using a hyperelastic potential law defined in Deviatoric Potentials whilst the volumetric potential $\mathcal{f}(J)$ is defined using a volumetric potential law in Volumic Potentials.

It is also possible to add inelastic deformations $\mathbf{F}^{in}$ (e.g. thermal expansion) by using an inelastic potential law in Inelastic Potentials. The elastic part of the total deformation gradient $\mathbf{F}^e$ writes $$ \mathbf{F}^e = \mathbf{F}\left(\mathbf{F}^{in}\right)^{-1} $$

Note that all computations are done with respect to the orthotropic axes.

Parameters

Name Metafor Code Dependency
Density MASS_DENSITY TO/TM
Initial bulk modulus ($k_0$) RUBBER_PENAL TO/TM
Number of the hyperelastic potential law HYPER_ELAST_POTENTIAL_NO -
Number of the volumetric potential law
(default = QuadLogVolumetricPotential)
HYPER_ELAST_POTENTIAL_NO -
Number of the inelastic potential law
(default = None)
HYPER_INELAST_POTENTIAL_NO -
Material temperature evolution law TEMP TM
Orthotropic axis ORTHO_AX1_X -
Orthotropic axis ORTHO_AX1_Y -
Orthotropic axis ORTHO_AX1_Z -
Orthotropic axis ORTHO_AX2_X -
Orthotropic axis ORTHO_AX2_Y -
Orthotropic axis ORTHO_AX2_Z -
Orthotropic axis initialized by mesh construction
boolean : True - False (default)
override OrthoAxis definition
ORTHO_INIT_AS_JACO

TmFunctionBasedOrthoHyperMaterial

Description

Thermo-mechanical hyperelastic law with orthotropic thermal conduction law, using a Cauchy stress tensor $\boldsymbol{\sigma}$, stress in the current configuration.

Thermal conduction writes in the orthotropic frame $$ \boldsymbol{K}~\nabla T = \left[ \begin{array}{c c c} K_1 & 0 & 0 \\ 0 & K_2 & 0 \\ 0 & 0 & K_3 \end{array} \right] \nabla T, $$ where $\boldsymbol{K}$ is the orthotropic conduction matrix (in material axes) and $\nabla T$ is the temperature gradient.

Parameters

Name Metafor Code Dependency
Density MASS_DENSITY TO/TM
Initial bulk modulus ($k_0$) RUBBER_PENAL TO/TM
Number of the hyperelastic potential law HYPER_ELAST_POTENTIAL_NO -
Number of the volumetric potential law
(default = QuadLogVolumetricPotential)
HYPER_ELAST_POTENTIAL_NO -
Number of the inelastic potential law
(default = None)
HYPER_INELAST_POTENTIAL_NO -
Number of the inelastic potential law
(default = None)
HYPER_INELAST_POTENTIAL_NO -
Material temperature evolution law TEMP TM
Orthotropic axis ORTHO_AX1_X -
Orthotropic axis ORTHO_AX1_Y -
Orthotropic axis ORTHO_AX1_Z -
Orthotropic axis ORTHO_AX2_X -
Orthotropic axis ORTHO_AX2_Y -
Orthotropic axis ORTHO_AX2_Z -
Orthotropic axis initialized by mesh construction
boolean : True - False (default)
override OrthoAxis definition
ORTHO_INIT_AS_JACO
Conductivity $K_1$ CONDUCTIVITY_1 TO/TM
Conductivity $K_2$ CONDUCTIVITY_2 TO/TM
Conductivity $K_3$ CONDUCTIVITY_3 TO/TM
Heat Capacity $C_p$ HEAT_CAPACITY TO/TM
Dissipated thermoelastic power fraction $\eta_e$ DISSIP_TE -
Dissipated (visco)plastic power fraction (Taylor-Quinney factor) DISSIP_TQ -

Example Materials

Some example materials from the literature using FunctionBasedHyperMaterial.

Generalized Neo-Hookean Material with Thermal Expansion

Holzapfel-Gasser-Ogden Anisotropic Material

Bonet-Burton Transversely-Isotropic Material

doc/user/elements/volumes/hyper_functionbased.1763047793.txt.gz · Last modified: by vanhulle

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki