The equilibrium equation between internal forces $F^{int}$, inertial forces $Ma$ (where $M$ is the diagonalized mass matrix and $a$ the acceleration) and external forces $F^{ext}$ :
$$Ma+F^{int}=F^{ext}$$
Relations between displacements $x$, velocities $v$ and accelerations $a$ are:
$$v(t^{n+1/2}) = v(t^{n-1/2}) + (t^{n+1}-t^n) a(t^n) $$
$$x(t^{n+1}) = x(t^n) + (t^{n+1}-t^n) v(t^{n+1/2}) $$
The equilibrium equation becomes :
$$a(t^{n+1}) = (F^{ext}(t^{n+1}) - F^{int}(t^{n+1}))/M $$
This scheme is conditionally stable (time step limited) and non dissipative.
Same relations as in the implicit alpha-generalized scheme, but with the parameter used to weight internal and external forces equal to 1, leading to :
$$(1-\alpha_M) a(t^{n+1}) + \alpha_M a(t^n) = \frac{F^{ext}(t^n) - F^{int}(t^n)}{M}$$
Relations between displacements $x$, velocities $v$ and accelerations $a$ are:
$$x(t^{n+1}) = x(t^n) + (t^{n+1}-t^n) v(t^n) + (t^{n+1}-t^n)^2 \left( (0.5-\beta)a(t^n) + \beta a(t^{n+1})\right) $$ $$v(t^{n+1}) = v(t^n) + (t^{n+1}-t^n) {(1-\gamma)a(t^n) + \gamma a(t^{n+1})} $$
Specific values leading to an optimal numerical dissipation are given as function of the spectral radius $\rho_\beta$ (MDR_ECHR
) for a bifurcation frequency (a spectral radius equal to 1 leads to a conservative algorithm when a spectral radius lower than 1 leads to a dissipative one 1):
$$\alpha_M = (2\rho_\beta-1)/(1+\rho_\beta) $$
$$\gamma = 3/2 - \alpha_M $$
$$\beta = \frac{5-3\rho_\beta}{(1+\rho_\beta)^2 (2-\rho_\beta)}$$
Conditionally stable.
Explicit algorithm where numerical dissipation is monitored by the parameter $\phi$.
Equilibrium computed with
$$a(t^{n+1}) = \frac{F^{ext}(t^{n+1}) - F^{int}(t^{n+1})}{M}$$
Relations between displacements $x$, velocities $v$ and accelerations $a$ are:
$$x(t^{n+1}) = x(t^n) + (t^{n+1}-t^n) v(t^n) + \phi (t^{n+1}-t^n)^2 a(t^n) $$
$$v(t^{n+1}) = v(t^n) + (t^{n+1}-t^n) a(t^n) $$
Stability guaranteed for $\phi \geq 1 $ and high frequencies killed over a single time step for \phi = 2$. the scheme is of :
Relation between $\phi$ and spectral radius for the bifurcation $\rho_\beta$ (user parameter MDR_ECHR
) is:
See dynamic implicit scheme for definition of density and initial velocities.
Scheme | MDE_NDYN | MDR_ECHR |
---|---|---|
Certered difference | 1 | |
Chung Hulbert | 3 | X |
Tchamwa | 6 | X |
ti = CentralDifferenceTimeIntegration(metafor) metafor.setTimeIntegration(ti)
ti = ChExplicitTimeIntegration(metafor) ti.setRhoB(_rhoB) metafor.setTimeIntegration(ti)
The parameter _rhoB
is the spectral radius at bifurcation point ([0, 1]). The default value is 0.8182.
ti = TchamwaExplicitTimeIntegration(metafor) ti.setRhoB(_rhoB) metafor.setTimeIntegration(ti)
The parameter _rhoB
is the spectral radius at bifurcation point ([0, 1]). The default value is 0.8182.
Other parameters : see Quasi-static integration schemes