Nodal fields (such as the displacement, the velocity, the temperature, etc.) are defined thanks to a combination of two “codes”: a Nature
and a Variant
.
field = Field1D(Nature, Variant)
Here is a list of some Nature
identifiers :
Nature | meaning |
---|---|
TX | X-coordinate |
TY | Y-coordinate |
TZ | Z-coordinate |
TO | temperature |
TM | time |
and the most basic Variant
ones
Variant | meaning |
---|---|
RE | relative |
AB | absolute |
GF1 | force #1 - External Forces (reaction & contact) |
GF2 | force #2 - Internal Forces |
GF3 | force #3 - Inertial Forces |
GV | first order derivative – velocity |
GA | second order derivative – acceleration |
Examples:
The meaning of a given Field1D
is deduced from the previous tables by combining the two components:
Field | meaning |
---|---|
Field1D(TX,RE) | “X-coordinate”, “relative” = displacement along X |
Field1D(TX,AB) | “X-coordinate”, “absolute” = initial position along X |
Field1D(TX,GF1) | “X-coordinate”, “force #1” = external load along X |
Field1D(TY,GA) | “Y-coordinate”, “acceleration” = acceleration along Y |
Field1D | Meaning in Metafor |
---|---|
Field1D(TX,AB) , Field1D(TY,AB) , Field1D(TZ,AB) | initial positions ($x$, $y$ and $z$) |
Field1D(TX,RE) , Field1D(TY,RE) , Field1D(TZ,RE) | displacements ($x$, $y$ and $z$) |
Field1D(TO,AB) | initial temperature |
Field1D(TO,RE) | temperature variation |
Field1D(TX,GV) , Field1D(TY,GV) , Field1D(TZ,GV) | velocities ($v_x$, $v_z$ and $v_z$) |
Field1D(TX,GA) , Field1D(TY,GA) , Field1D(TZ,GA) | accelerations ($a_x$, $a_y$, $a_z$) |
Field1D(TM,RE) | time |
Field1D(TX,GF1) , Field1D(TY,GF1) , Field1D(TZ,GF1) | mechanical external forces / contact forces |
Field1D(TX,GF2) , Field1D(TY,GF2) , Field1D(TZ,GF2) | mechanical internal forces |
Field1D(TX,GF3) , Field1D(TY,GF3) , Field1D(TZ,GF3) | inertia forces |
Field1D(TO,GF1) | thermal external forces |
Field1D(TO,GF2) | thermal external forces |
… | … |