Table of Contents

Plastic criteria

The PlasticCriterion class manages the possibility to replace the default Von Mises plastic criterion by another one, described below.

VonMisesPlasticCriterion

Description

Isotropic plastic criterion (default in Metafor)

$$ \sqrt{\frac{3}{2}s_{ij}s_{ij}} - (\sigma_{vm} + \sigma_{visq} + \sigma_{grainSize} + ...) = 0 $$

Parameters

néant

Hill48PlasticCriterion

Description

Second order orthotropic plastic criterion

$$ \begin{multline} \sqrt{\frac{1}{2}} \sqrt{F (s_{22}-s_{33})^2 + G (s_{33}-s_{11})^2 + H (s_{11}-s_{22})^2 + 2 (L s_{13}^2 + M s_{23}^2 + N s_{12}^2) } \\- (\sigma_{vm} + \sigma_{visq} + \sigma_{grainSize} + ...) = 0 \end{multline} $$

where stresses are defined in an orthotropic frame.

Parameters

Name Metafor Code Dependency
$ F $ HILL48_F néant
$ G $ HILL48_G néant
$ H $ HILL48_H néant
$ L $ HILL48_L néant
$ M $ HILL48_M néant
$ N $ HILL48_N néant

Parameter estimation (for sheet metal)

For sheet metal, the anisotropic parameters can be estimated based on tensile tests (plastic strain of around 10%). Strains are measured along the width ($ \varepsilon_{t} $) and the thickness ($ \varepsilon_{e} $). The plastic anisotropy coefficient is then defined as : $ r = \frac{\varepsilon_{t}}{\varepsilon_{e}} $

This test is done in samples cut along the 0, 45 and 90 degrees axes to define $r_{0}$ , $_{45}$ , $r_{90}$.

A planar average is then defined as : $ r_{moy} = \frac{r_{0} + 2 r_{45} + r_{90}}{4} $

Based on tensile tests, it is not possible to estimate shear through the thickness, so L and M parameters are considered equal to 3.