The PlasticCriterion
class manages the possibility to replace the default Von Mises plastic criterion by another one, described below.
Isotropic plastic criterion (default in Metafor)
$$ \sqrt{\frac{3}{2}s_{ij}s_{ij}} - (\sigma_{vm} + \sigma_{visq} + \sigma_{grainSize} + ...) = 0 $$
néant
Second order orthotropic plastic criterion
$$ \begin{multline} \sqrt{\frac{1}{2}} \sqrt{F (s_{22}-s_{33})^2 + G (s_{33}-s_{11})^2 + H (s_{11}-s_{22})^2 + 2 (L s_{13}^2 + M s_{23}^2 + N s_{12}^2) } \\- (\sigma_{vm} + \sigma_{visq} + \sigma_{grainSize} + ...) = 0 \end{multline} $$
where stresses are defined in an orthotropic frame.
Name | Metafor Code | Dependency |
---|---|---|
$ F $ | HILL48_F | néant |
$ G $ | HILL48_G | néant |
$ H $ | HILL48_H | néant |
$ L $ | HILL48_L | néant |
$ M $ | HILL48_M | néant |
$ N $ | HILL48_N | néant |
For sheet metal, the anisotropic parameters can be estimated based on tensile tests (plastic strain of around 10%). Strains are measured along the width ($ \varepsilon_{t} $) and the thickness ($ \varepsilon_{e} $). The plastic anisotropy coefficient is then defined as : $ r = \frac{\varepsilon_{t}}{\varepsilon_{e}} $
This test is done in samples cut along the 0, 45 and 90 degrees axes to define $r_{0}$ , $_{45}$ , $r_{90}$.
A planar average is then defined as : $ r_{moy} = \frac{r_{0} + 2 r_{45} + r_{90}}{4} $
Based on tensile tests, it is not possible to estimate shear through the thickness, so L and M parameters are considered equal to 3.