The PlasticCriterion
class manages the possibility to replace the default Von Mises plastic criterion by another one, described below.
Isotropic plastic criterion (default in Metafor)
√32sijsij−(σvm+σvisq+σgrainSize+...)=0
néant
Second order orthotropic plastic criterion
√12√F(s22−s33)2+G(s33−s11)2+H(s11−s22)2+2(Ls213+Ms223+Ns212)−(σvm+σvisq+σgrainSize+...)=0
where stresses are defined in an orthotropic frame.
Name | Metafor Code | Dependency |
---|---|---|
F | HILL48_F | néant |
G | HILL48_G | néant |
H | HILL48_H | néant |
L | HILL48_L | néant |
M | HILL48_M | néant |
N | HILL48_N | néant |
For sheet metal, the anisotropic parameters can be estimated based on tensile tests (plastic strain of around 10%). Strains are measured along the width (εt) and the thickness (εe). The plastic anisotropy coefficient is then defined as : r=εtεe
This test is done in samples cut along the 0, 45 and 90 degrees axes to define r0 , 45 , r90.
A planar average is then defined as : rmoy=r0+2r45+r904
Based on tensile tests, it is not possible to estimate shear through the thickness, so L and M parameters are considered equal to 3.