Table of Contents

Kinematic hardening

The KinematicHardening class manages the kinematic hardening evolution laws.

DruckerPragerKinematicHardening

Description

Drucker-Prager linear kinematic hardening.

$$ \dot{X}_{ij}^{dp} = \dfrac{2}{3}\, h\,D_{ij}^{vp}$$

Parameters

Name Metafor Code Dependency
$h $ KH_H TM

ArmstrongFrederickKinematicHardening

Description

Armstrong-Frederick kinematic hardening including dynamic restoration.

$$ \dot{X}_{ij}^{af} = \dfrac{2}{3}\, h\,D_{ij}^{vp} - b\, \dot{\bar{\varepsilon}}\, X_{ij}^{af} $$

Parameters

Name Metafor Code Dependency
$h $ KH_H TM
$b $ KH_B TM

ChabocheKinematicHardening

Description

Chaboche kinematic hardening including static restoration.

$$ \dot{X}_{ij}^{cf} = \dfrac{2}{3}\, h\,D_{ij}^{vp} - b\, \dot{\bar{\varepsilon}}\, X_{ij}^{ch} - \dfrac{h}{M} \left(\dfrac{J_2\left(\mathbf{X}^{ch}\right)}{M}\right)^{m-1} X_{ij}^{ch} $$

Parameters

Name Metafor Code Dependency
$h $ KH_H TM
$b $ KH_B TM
$M $ KH_BIGM TM
$m $ KH_SMAM TM

AsaroKinematicHardening

Description

Asaro kinematic hardening.

$$ X_{ij}^{as} = \dfrac{h_s}{b_s}\, \tanh \left(b_s\left|\left|E_{ij}^{vp}\right|\right|\right) \dfrac{E_{ij}^{vp}}{\left|\left|E_{ij}^{vp}\right|\right|} $$

Parameters

Name Metafor Code Dependency
$h_s$ KH_HS TM
$b_s$ KH_BS TM