The KinematicHardening
class manages the kinematic hardening evolution laws.
Drucker-Prager linear kinematic hardening.
$$ \dot{X}_{ij}^{dp} = \dfrac{2}{3}\, h\,D_{ij}^{vp}$$
Name | Metafor Code | Dependency |
---|---|---|
$h $ | KH_H | TM |
Armstrong-Frederick kinematic hardening including dynamic restoration.
$$ \dot{X}_{ij}^{af} = \dfrac{2}{3}\, h\,D_{ij}^{vp} - b\, \dot{\bar{\varepsilon}}\, X_{ij}^{af} $$
Name | Metafor Code | Dependency |
---|---|---|
$h $ | KH_H | TM |
$b $ | KH_B | TM |
Chaboche kinematic hardening including static restoration.
$$ \dot{X}_{ij}^{cf} = \dfrac{2}{3}\, h\,D_{ij}^{vp} - b\, \dot{\bar{\varepsilon}}\, X_{ij}^{ch} - \dfrac{h}{M} \left(\dfrac{J_2\left(\mathbf{X}^{ch}\right)}{M}\right)^{m-1} X_{ij}^{ch} $$
Name | Metafor Code | Dependency |
---|---|---|
$h $ | KH_H | TM |
$b $ | KH_B | TM |
$M $ | KH_BIGM | TM |
$m $ | KH_SMAM | TM |
Asaro kinematic hardening.
$$ X_{ij}^{as} = \dfrac{h_s}{b_s}\, \tanh \left(b_s\left|\left|E_{ij}^{vp}\right|\right|\right) \dfrac{E_{ij}^{vp}}{\left|\left|E_{ij}^{vp}\right|\right|} $$
Name | Metafor Code | Dependency |
---|---|---|
$h_s$ | KH_HS | TM |
$b_s$ | KH_BS | TM |