Table of Contents

Volumic Potentials

The VolumicPotential material law regroups all the functions $\mathcal{f}(J)$ such that the volumetric part of the strain-energy density function $W_{vol}$ can be expressed as $$ W_{vol} = k_0\mathcal{f}(J) $$ with the compression modulus $k_0$ defined on the material level.

QuadraticVolumicPotential

Description

Quadratic volumetric strain density (default for FunctionBasedHyperMaterial) $$ \mathcal{f}(J) = \frac{1}{2}\left(J-1\right)^2 $$

Parameters

No parameters required

LogarithmicVolumicPotential

Description

Logarithmic volumetric strain density $$ \mathcal{f}(J) = \frac{1}{2}\left(\text{ln}J\right)^2 $$

Parameters

No parameters required

QuadLogVolumicPotential

Description

Quadratic-Logarithmic volumetric strain density (same as NeoHookeanHyperMaterial and MooneyRivlinHyperMaterial) $$ \mathcal{f}(J) = \frac{1}{2}\left(J-1\right)^2 + \frac{1}{2}\left(\text{ln}J\right)^2 $$

Parameters

No parameters required

HartmannNeffVolumicPotential

Description

Volumetric strain density from Hartmann S.,Neff P., 2003 Polyconvexity of generalized polynomial-type hyperelastic strain energy functions for near-incompressibility, Int. J. Solids Struct., 40, 2767–2791. $$ \mathcal{f}(J) = \frac{1}{50}\left(J^5+J^{-5}-2\right) $$

Parameters

No parameters required

MieheVolumicPotential

Description

Volumetric strain density from Miehe C., 1994, Aspects of the formulation and finite element implementation of large strain isotropic elasticity, Int. J. Numer. Meth. Engng., 37, 1981–2004. $$ \mathcal{f}(J) = J - \text{ln}J -1 $$

Parameters

No parameters required

SimoTaylorVolumicPotential

Description

Volumetric strain density from Simo J., Taylor R., 1991, Quasi-incompressible finite elasticity in principal stretches. continuum basis and numerical algorithms, Comput. Methods Appl. Mech. Eng., 85, 273–310. $$ \mathcal{f}(J) = \frac{1}{4}\left( J^2 - 2\text{ln}J - 1 \right) $$

Parameters

No parameters required

OgdenVolumicPotential

Description

Volumetric strain density from Ogden R. W., 1972, Large deformation isotropic elasticity – on the correlation of theory and experiment for incompressible rubberlike solids, Proc. R. Soc. Lond., 326, 565–584. $$ \mathcal{f}(J) = \frac{1}{\beta^2}\left( \beta\text{ln}J + J^{-\beta} - 1 \right) $$ where $\beta$ is an experimentally determined material parameter.

Parameters

Name Metafor Code Dependency
Ogden beta parameter ($\beta$) HYPER_OGDEN_BETA TO/TM