====== Explicit dynamic integration schemes ====== ===== Description ===== The equilibrium equation between internal forces $F^{int}$, inertial forces $Ma$ (where $M$ is the diagonalized mass matrix and $a$ the acceleration) and external forces $F^{ext}$ : $$Ma+F^{int}=F^{ext}$$ ==== Central difference method ==== Relations between displacements $x$, velocities $v$ and accelerations $a$ are: $$v(t^{n+1/2}) = v(t^{n-1/2}) + (t^{n+1}-t^n) a(t^n) $$ \\ $$x(t^{n+1}) = x(t^n) + (t^{n+1}-t^n) v(t^{n+1/2}) $$ The equilibrium equation becomes : $$a(t^{n+1}) = (F^{ext}(t^{n+1}) - F^{int}(t^{n+1}))/M $$ This scheme is conditionally stable (time step limited) and non dissipative. ==== Alpha-generalized scheme ==== Same relations as in the implicit [[dynimpl|alpha-generalized]] scheme, but with the parameter used to weight internal and external forces equal to 1, leading to : $$(1-\alpha_M) a(t^{n+1}) + \alpha_M a(t^n) = \frac{F^{ext}(t^n) - F^{int}(t^n)}{M}$$ Relations between displacements $x$, velocities $v$ and accelerations $a$ are: $$x(t^{n+1}) = x(t^n) + (t^{n+1}-t^n) v(t^n) + (t^{n+1}-t^n)^2 \left( (0.5-\beta)a(t^n) + \beta a(t^{n+1})\right) $$ $$v(t^{n+1}) = v(t^n) + (t^{n+1}-t^n) {(1-\gamma)a(t^n) + \gamma a(t^{n+1})} $$ Specific values leading to an optimal numerical dissipation are given as function of the spectral radius $\rho_\beta$ (''MDR_ECHR'') for a bifurcation frequency (a spectral radius equal to 1 leads to a conservative algorithm when a spectral radius lower than 1 leads to a dissipative one ((see real parameters)): $$\alpha_M = (2\rho_\beta-1)/(1+\rho_\beta) $$\\ $$\gamma = 3/2 - \alpha_M $$\\ $$\beta = \frac{5-3\rho_\beta}{(1+\rho_\beta)^2 (2-\rho_\beta)}$$ Conditionally stable. ==== Tchamwa Scheme ==== Explicit algorithm where numerical dissipation is monitored by the parameter $\phi$. Equilibrium computed with $$a(t^{n+1}) = \frac{F^{ext}(t^{n+1}) - F^{int}(t^{n+1})}{M}$$ Relations between displacements $x$, velocities $v$ and accelerations $a$ are: $$x(t^{n+1}) = x(t^n) + (t^{n+1}-t^n) v(t^n) + \phi (t^{n+1}-t^n)^2 a(t^n) $$\\ $$v(t^{n+1}) = v(t^n) + (t^{n+1}-t^n) a(t^n) $$ Stability guaranteed for $\phi \geq 1 $ and high frequencies killed over a single time step for \phi = 2$. the scheme is of : * second order for $\phi = 1$ (no numerical dissipation) * first order for $\phi > 1$ (numerical dissipation) Relation between $\phi$ and spectral radius for the bifurcation $\rho_\beta$ (user parameter ''MDR_ECHR'') is: * $$\phi = \frac{2(1- \rho_\beta^{1/2})}{(1-\rho_\beta)} \mbox{ if } \rho_\beta < 1 $$ * $$\phi = 1 \mbox{ if } \rho_\beta = 1 $$ ===== Input file ===== See [[dynimpl|dynamic implicit]] scheme for definition of density and initial velocities. ==== Old Metafor Version <= 2422 ==== === Choosing the algorithm === ^ Scheme ^ ''MDE_NDYN'' ^ ''MDR_ECHR'' ^ | Certered difference | 1 | | | Chung Hulbert | 3 | X | | Tchamwa | 6 | X | (see [[doc:user:integration:general:parameters]]) ==== New Metafor Version > 2422 ==== === Centered Difference === ti = CentralDifferenceTimeIntegration(metafor) metafor.setTimeIntegration(ti) === Chung Hulbert === ti = ChExplicitTimeIntegration(metafor) ti.setRhoB(_rhoB) metafor.setTimeIntegration(ti) The parameter ''_rhoB'' is the spectral radius at bifurcation point ([0, 1]). The default value is 0.8182. === Tchamwa === ti = TchamwaExplicitTimeIntegration(metafor) ti.setRhoB(_rhoB) metafor.setTimeIntegration(ti) The parameter ''_rhoB'' is the spectral radius at bifurcation point ([0, 1]). The default value is 0.8182. Other parameters : see [[quasistatique]]