====== Fields at Gauss Points ====== Fields that are computed at each integration point are referenced by codes with the ''IF'' prefix (standing for **I**nternal **F**ield). ^ Metafor Code ^ Description ^ | ''IF_DEV_SIG_XX'' | Cauchy stress deviator tensor (see important remark at the bottom) | | ''IF_DEV_SIG_YY'' | :::| | ''IF_DEV_SIG_ZZ'' | :::| | ''IF_SIG_XX'' | Cauchy stress tensor (see important remark at the bottom) | | ''IF_SIG_YY'' | :::| | ''IF_SIG_ZZ'' | :::| | ''IF_SIG_XY'' | :::| | ''IF_SIG_XZ'' | :::| | ''IF_SIG_YZ'' | :::| | ''IF_SIG_1'' | Cauchy Principal stress 1 | | ''IF_SIG_2'' | Cauchy Principal stress 2 | | ''IF_SIG_3'' | Cauchy Principal stress 3 | | ''IF_DEV_SIG_ORTHO_XX'' | Cauchy stress deviator tensor in a frame which moves with the matter (see important remark at the bottom) | | ''IF_DEV_SIG_ORTHO_YY'' | :::| | ''IF_DEV_SIG_ORTHO_ZZ'' | :::| | ''IF_SIG_ORTHO_XX'' | Cauchy stress deviator tensor in a frame which moves with the matter| | ''IF_SIG_ORTHO_YY'' |::: | | ''IF_SIG_ORTHO_ZZ'' |::: | | ''IF_SIG_ORTHO_XY'' |::: | | ''IF_SIG_ORTHO_XZ'' |::: | | ''IF_SIG_ORTHO_YZ'' |::: | | ''IF_ALP_XX'' | "backstress" (kinematic hardening) | | ''IF_ALP_YY'' | :::| | ''IF_ALP_ZZ'' | :::| | ''IF_ALP_XY'' | :::| | ''IF_ALP_XZ'' | :::| | ''IF_ALP_YZ'' | :::| | ''IF_GL_STRAIN_XX'' | Green-Lagrange strains (in the initial frame) | | ''IF_GL_STRAIN_YY'' | :::| | ''IF_GL_STRAIN_ZZ'' | :::| | ''IF_GL_STRAIN_XY'' | :::| | ''IF_GL_STRAIN_XZ'' | :::| | ''IF_GL_STRAIN_YZ'' | :::| | ''IF_NAT_STRAIN_XX'' | Natural strains (in the initial frame) | | ''IF_NAT_STRAIN_YY'' | :::| | ''IF_NAT_STRAIN_ZZ'' | :::| | ''IF_NAT_STRAIN_XY'' | :::| | ''IF_NAT_STRAIN_XZ'' | :::| | ''IF_NAT_STRAIN_YZ'' | :::| | ''IF_BIOT_STRAIN_XX'' | Biot strains (in the initial frame)| | ''IF_BIOT_STRAIN_YY'' | :::| | ''IF_BIOT_STRAIN_ZZ'' | :::| | ''IF_BIOT_STRAIN_XY'' | :::| | ''IF_BIOT_STRAIN_XZ'' | :::| | ''IF_BIOT_STRAIN_YZ'' | :::| | ''IF_ALP_J2'' | contrainte cinématique équivalente :?: | | ''IF_P'' | pressure | | ''IF_EPL'' | equivalent plastic strain | | ''IF_DEPL'' | equivalent plastic strain rate | | ''IF_EVMS'' | von Mises stress | | ''IF_CRITERION'' | Plastic Criterion (different to EVMS if VonMises is not used as plastic Critetion) | | ''IF_YIELD_STRESS'' | yield stress | | ''IF_VISCOPLAST_STRESS'' | Visco-Plastic Stress | | ''IF_GRAINSIZE'' | grain size Value | | ''IF_GRAINSIZE_STRESS'' | grain size Stress | | ''IF_TRIAX'' | stress triaxiality T = hydrostatic stress / equivalent stress | | ''IF_RUPT_CRIT'' | rupture Criterion | | ''IF_ISO_DAMAGE'' | isotropic damage | | ''IF_DAMAGE_XX'' | orthotropic damage | | ''IF_DAMAGE_YY'' | :::| | ''IF_DAMAGE_ZZ'' | :::| | ''IF_DAMAGE_XY'' | :::| | ''IF_DAMAGE_YZ'' | :::| | ''IF_DAMAGE_XZ'' | :::| | ''IF_RHO'' | density | | ''IF_FLUX_X'' | heat flux | | ''IF_FLUX_Y'' | :::| | ''IF_FLUX_Z'' | :::| | ''IF_GRADT_X'' | temperature gradient | | ''IF_GRADT_Y'' | :::| | ''IF_GRADT_Z'' | :::| | ''IF_DEV_SIG_XX_UPPER_SIDE'' | stress deviator tensor - upper skin of a shell{{:doc:user:ico-expert.png?18|Expert!}}{{:doc:user:ico-danger.png?18|Danger!}} | | ''IF_DEV_SIG_YY_UPPER_SIDE'' | :::| | ''IF_DEV_SIG_ZZ_UPPER_SIDE'' | :::| | ''IF_SIG_XX_UPPER_SIDE'' | stress tensor - upper skin of a shell{{:doc:user:ico-expert.png?18|Expert!}}{{:doc:user:ico-danger.png?18|Danger!}} | | ''IF_SIG_YY_UPPER_SIDE'' | :::| | ''IF_SIG_ZZ_UPPER_SIDE'' | :::| | ''IF_SIG_XY_UPPER_SIDE'' | :::| | ''IF_SIG_XZ_UPPER_SIDE'' | :::| | ''IF_SIG_YZ_UPPER_SIDE'' | :::| | ''IF_P_UPPER_SIDE'' | pressure - upper skin of a shell{{:doc:user:ico-expert.png?18|Expert!}}{{:doc:user:ico-danger.png?18|Danger!}} | | ''IF_EPL_UPPER_SIDE'' | equivalent plastic strain - upper skin of a shell{{:doc:user:ico-expert.png?18|Expert!}}{{:doc:user:ico-danger.png?18|Danger!}} | | ''IF_DEV_SIG_XX_LOWER_SIDE'' | stress deviator tensor - lower skin of a shell{{:doc:user:ico-expert.png?18|Expert!}}{{:doc:user:ico-danger.png?18|Danger!}} | | ''IF_DEV_SIG_YY_LOWER_SIDE'' | :::| | ''IF_DEV_SIG_ZZ_LOWER_SIDE'' | :::| | ''IF_SIG_XX_LOWER_SIDE'' | stress tensor - lower skin of a shell{{:doc:user:ico-expert.png?18|Expert!}}{{:doc:user:ico-danger.png?18|Danger!}} | | ''IF_SIG_YY_LOWER_SIDE'' | :::| | ''IF_SIG_ZZ_LOWER_SIDE'' | :::| | ''IF_SIG_XY_LOWER_SIDE'' | :::| | ''IF_SIG_XZ_LOWER_SIDE'' | :::| | ''IF_SIG_YZ_LOWER_SIDE'' | :::| | ''IF_P_LOWER_SIDE'' | pressure - lower skin of a shell{{:doc:user:ico-expert.png?18|Expert!}}{{:doc:user:ico-danger.png?18|Danger!}} | | ''IF_EPL_LOWER_SIDE'' | equivalent plastic strain - lower skin of a shell{{:doc:user:ico-expert.png?18|Expert!}}{{:doc:user:ico-danger.png?18|Danger!}} | | ''IF_THICKNESS'' | deformed thickness of a shell{{:doc:user:ico-expert.png?18|Expert!}}{{:doc:user:ico-danger.png?18|Danger!}} | | ''IF_CURVATURE_XX'' | shell curvatures{{:doc:user:ico-expert.png?18|Expert!}}{{:doc:user:ico-danger.png?18|Danger!}} | | ''IF_CURVATURE_YY'' | :::| | ''IF_CURVATURE_ZZ'' | :::| | ''IF_CURVATURE_XY'' | :::| | ''IF_CURVATURE_XZ'' | :::| | ''IF_CURVATURE_YZ'' | :::| | ''IF_TORQUE_XX'' | shell torques{{:doc:user:ico-expert.png?18|Expert!}}{{:doc:user:ico-danger.png?18|Danger!}} | | ''IF_TORQUE_YY'' | :::| | ''IF_TORQUE_ZZ'' | :::| | ''IF_TORQUE_XY'' | :::| | ''IF_TORQUE_XZ'' | :::| | ''IF_TORQUE_YZ'' | :::| | ''IF_FTOTAL_XX'' | deformation gradient | | ''IF_FTOTAL_YY'' | :::| | ''IF_FTOTAL_ZZ'' | :::| | ''IF_FTOTAL_XY'' | :::| | ''IF_FTOTAL_XZ'' | :::| | ''IF_FTOTAL_YZ'' | :::| | ''IF_FTOTAL_YX'' | :::| | ''IF_FTOTAL_ZX'' | :::| | ''IF_FTOTAL_ZY'' | :::| | ''IF_LODE_PARAMETER'' | Lode parameter $\in [-1,1]$ | This codes are to be used in [[doc:user:results:courbes_res]] to specify which field must be archived. Important note: ''IF_SIG_XX'' stresses are always Cauchy stresses, whether a [[doc:user:elements:volumes:iso_hypo_materials#evpisohhypomaterial|hypoelastic]] or [[doc:user:elements:volumes:hyper_materials#neohookeanhyperpk2material|hyperelastic]] formulation is used. To get Piola-Kirchhoff-2 stresses, the transformation formula must be applied, used the gradient deformation tensor (''IF_FTOTAL_XX'', ...): $$ \boldsymbol{\sigma}_{\text{cauchy}} = \dfrac{\mathbf{F}\,\boldsymbol{\sigma}_{\text{PK2}}\,\mathbf{F}^T}{\det(\mathbf{F}_{\text{total}})} $$