====== Cohesion degree====== The ''CohesionMatLaw'' class manages all cohesion degree evolution laws, specific to thixotropic materials. These laws are described below. :!: Careful: Only works if used with thixotropic materials (''ThixoEvpIsoHHypoMaterial'' or ''ThixoTmEvpIsoHHypoMaterial''). ===== IsothCohesionMatLaw ===== === Description === The evolution of the structural parameter λ can be expressed by a differential equation that describes the kinetics between the agglomeration of the solid grains and the destruction of the solid bonds due to shearing. Solved using Newton-raphson, this equation is isothermal since it does not take the [[doc:user:elements:volumes:thixo_scheilliquidfractionmatlaw|liquid fraction]] into account. $$ d \lambda / dt = a (1 - \lambda)^{1+e} - b \lambda e^{c \dot{\bar{\epsilon}}^{vp} } (\dot{\bar{\epsilon}}^{vp})^d $$ === Parameters === ^ Name ^ Metafor Code ^ Dependency ^ | $ a $ | ''LAMBDA_A'' | ''TM/TO'' | | $ b $ | ''LAMBDA_B'' | ''TM/TO'' | | $ c $ | ''LAMBDA_C'' | ''TM/TO'' | | $ d $ | ''LAMBDA_D'' | ''TM/TO'' | | $ e $ | ''LAMBDA_E'' | ''TM/TO'' | ===== BurgosCohesionMatLaw ===== === Description === Burgos law, this time considering the [[doc:user:elements:volumes:thixo_scheilliquidfractionmatlaw|liquid fraction]]. The cohesion degree is an explicit function of the equivalent plastic strain rate (integration over a time step where the equivalent plastic strain is supposed to remain constant). $$ \lambda =\lambda_e + ( \lambda_0 - \lambda_e) e^{F(\lambda) \Delta t} $$ where $$ F(\lambda) = -\left( a'+b' e^{c \dot{\bar{\epsilon}}^{vp}} (\dot{\bar{\epsilon}}^{vp})^{d'} \right) $$ $$ \lambda_e = \frac{-a'}{F(\lambda)} $$ $$ a' = a (1-f_l) + f e^{-g f_l} $$ $$ b' = b f_l + f e^{-g (1-f_l)} $$ $$ d' = d (1-(f_l)^{e}) $$ === Parameters === ^ Name ^ Metafor Code ^ Dependency ^ | $ a $ | ''LAMBDA_A'' | ''TM/TO'' | | $ b $ | ''LAMBDA_B'' | ''TM/TO'' | | $ c $ | ''LAMBDA_C'' | ''TM/TO'' | | $ d $ | ''LAMBDA_D'' | ''TM/TO'' | | $ e $ | ''LAMBDA_E'' | '' / '' | | $ f $ | ''LAMBDA_F'' | '' / '' | | $ g $ | ''LAMBDA_G'' | '' / '' | ===== FavierCohesionMatLaw ===== === Description === Burgos law, this time considering the [[doc:user:elements:volumes:thixo_scheilliquidfractionmatlaw|liquid fraction]]. The cohesion degree is an explicit function of the equivalent plastic strain rate (integration over a time step where the equivalent plastic strain is supposed to remain constant). Percolation is also taken into account, meaning that the cohesion degree approaches zero when the liquid fraction approaches a critical value $ f_c = e $. $$ \lambda = \lambda_e + ( \lambda_0 - \lambda_e) e^{F(\lambda) \Delta t} \mbox{ if } f_l < f_c = e $$ $$ \lambda = 0 \mbox{ if } f_l \geq f_c = e $$ where $$ F(\lambda) = -\left( a'+b' e^{c \dot{\bar{\epsilon}}^{vp}} (\dot{\bar{\epsilon}}^{vp})^d \right) $$ $$ \lambda_e = \frac{-a'}{F(\lambda)} $$ $$ a' = a (1-f_l) + f e^{-g f_l} $$ $$ b' = b f_l + f e^{-g (1-f_l)} $$ === Parameters === ^ Name ^ Metafor Code ^ Dependency ^ | $ a $ | ''LAMBDA_A'' | ''TM/TO'' | | $ b $ | ''LAMBDA_B'' | ''TM/TO'' | | $ c $ | ''LAMBDA_C'' | ''TM/TO'' | | $ d $ | ''LAMBDA_D'' | ''TM/TO'' | | $ e $ | ''LAMBDA_E'' | '' / '' | | $ f $ | ''LAMBDA_F'' | '' / '' | | $ g $ | ''LAMBDA_G'' | '' / '' |