====== Continuous orthotropic damage ====== The ''ContinousDamage'' class manages all continuous damage evolution laws. When a new law is defined, the evolution of the damage variable $ \Delta D $ must be defined, and so must be its derivatives with respect to pressure, plastic strain and damage. Orthotropic laws implemented in Metafor. ===== WovenCompositeDamage ===== === Description === Damage law with delay effect for woven composites. The strain energy density is written as: $$ \begin{eqnarray*} W_{\rm D} &=& \dfrac{1}{2}\Biggl( \dfrac{\sigma_{11}^2}{E_1\,(1-d_{11})} -2\,\dfrac{\nu_{12}}{E_1}\,\sigma_{11}\,\sigma_{22} -2\,\dfrac{\nu_{13}}{E_1}\,\sigma_{11}\,\sigma_{33} \\ && +\dfrac{\sigma_{22}^2}{E_2\,(1-d_{22})} -2\,\dfrac{\nu_{23}}{E_2}\,\sigma_{22}\,\sigma_{33} \\ &&+\dfrac{\sigma_{33}^2}{E_3} +\dfrac{\sigma_{12}^2}{G_{12}\,(1-d_{12})} +\dfrac{\sigma_{13}^2}{G_{13}\,(1-\lambda\, d_{12})} +\dfrac{\sigma_{23}^2}{G_{23}\,(1-\lambda\, d_{12})} \Biggr) \;. \end{eqnarray*} $$ Three damage variables are introduced. Delay effect is introduced with the definition of a law governing the temporal evolution of damage : $$ \dot{d}_{ij} = \frac{1}{\tau_c}\,\left( 1-e^{-a_c\,\langle d^s_{ij} - d_{ij} \rangle_+} \right) \;, $$ where $a_c$ and $\tau_c$ are delay effect parameters, $\langle x \rangle_+$ is a function equal to $x$ if $x$ is positive and 0 otherwise, and $d^s_{ij}$ is the static damage value. Along the fibers, $$ \begin{eqnarray*} d_{11}^s &=& \left\{ \begin{array}{ll} 0 & \text{ if } \left(Y_{11}0\right) \text{ or } \left(Y_{11}0\right) \text{ or } \left(Y_{22}0 \\ 0 & \text{ otherwise} \end{array} \right. \;, \end{eqnarray*} $$ then $$ \begin{eqnarray*} d_{12}^s = \min\left( 1, \left\langle \frac{\sqrt{Y_{\rm eq}}-\sqrt{Y_0}}{\sqrt{Y^c_{12}}-\sqrt{Y_0}} \right\rangle_+ \right) \;. \end{eqnarray*} $$ === Parameters === ^ Name ^ Metafor Code ^ | $Y_{11}^{c+}$ | WOVEN_YCP11 | | $Y_{11}^{c-}$ | WOVEN_YCM11 | | $Y_{22}^{c+}$ | WOVEN_YCP22 | | $Y_{22}^{c-}$ | WOVEN_YCM22 | | $Y_0$ | WOVEN_Y0 | | $Y^c_{12}$ | WOVEN_Y12C | | $\lambda$ | WOVEN_LAMBDA | | $\alpha_1$ | WOVEN_ALPHA1 | | $\alpha_2$ | WOVEN_ALPHA2 | | $a_c$ | TIME_DELAY_AC | | $\tau_c$ | TIME_DELAY_TAUC |