====== Kinematic hardening ====== The ''KinematicHardening'' class manages the kinematic hardening evolution laws. ===== DruckerPragerKinematicHardening ===== === Description === Drucker-Prager linear kinematic hardening. $$ \dot{X}_{ij}^{dp} = \dfrac{2}{3}\, h\,D_{ij}^{vp}$$ === Parameters === ^ Name ^ Metafor Code ^ Dependency ^ |$h $ | ''KH_H'' | ''TM'' | ===== ArmstrongFrederickKinematicHardening ===== === Description === Armstrong-Frederick kinematic hardening including dynamic restoration. $$ \dot{X}_{ij}^{af} = \dfrac{2}{3}\, h\,D_{ij}^{vp} - b\, \dot{\bar{\varepsilon}}\, X_{ij}^{af} $$ === Parameters === ^ Name ^ Metafor Code ^ Dependency ^ |$h $ | ''KH_H'' | ''TM'' | |$b $ | ''KH_B'' | ''TM'' | ===== ChabocheKinematicHardening ===== === Description === Chaboche kinematic hardening including static restoration. $$ \dot{X}_{ij}^{cf} = \dfrac{2}{3}\, h\,D_{ij}^{vp} - b\, \dot{\bar{\varepsilon}}\, X_{ij}^{ch} - \dfrac{h}{M} \left(\dfrac{J_2\left(\mathbf{X}^{ch}\right)}{M}\right)^{m-1} X_{ij}^{ch} $$ === Parameters === ^ Name ^ Metafor Code ^ Dependency ^ |$h $ | ''KH_H'' | ''TM'' | |$b $ | ''KH_B'' | ''TM'' | |$M $ | ''KH_BIGM'' | ''TM'' | |$m $ | ''KH_SMAM'' | ''TM'' | ===== AsaroKinematicHardening ===== === Description === Asaro kinematic hardening. $$ X_{ij}^{as} = \dfrac{h_s}{b_s}\, \tanh \left(b_s\left|\left|E_{ij}^{vp}\right|\right|\right) \dfrac{E_{ij}^{vp}}{\left|\left|E_{ij}^{vp}\right|\right|} $$ === Parameters === ^ Name ^ Metafor Code ^ Dependency ^ |$h_s$ | ''KH_HS'' | ''TM'' | |$b_s$ | ''KH_BS'' | ''TM'' |