====== Isotropic hardening ======
The ''IsotropicHardening'' class manages all isotropic hardening laws in Metafor, which are described below.
===== LinearIsotropicHardening =====
=== Description ===
Linear isotropic hardening
$$
\sigma_{vm} = \sigma^{el} + h\, \bar{\varepsilon}^{vp}
$$
=== Parameters ===
^ Name ^ Metafor Code ^ Dependency ^
|Initial yield stress $\sigma^{el}$ | ''IH_SIGEL'' | ''TM/TO'' |
|Plastic Modulus $h $ | ''IH_H'' | ''TM/TO'' |
**NB**: the plastic modulus is defined as $h = \frac{E E_T}{E - E_T} $, where $E$ is the Young's modulus and $E_T$ the tangent modulus.
===== SaturatedIsotropicHardening =====
=== Description ===
Saturated isotropic hardening
$$
\sigma_{vm} = \sigma^{el} + Q\left(1-\exp\left(-\xi \bar{\varepsilon}^{vp}\right)\right)
$$
=== Parameters ===
^ Name ^ Metafor Code ^ Dependency ^
|Initial yield stress $\sigma^{el}$ | ''IH_SIGEL'' | ''TM/TO'' |
|$Q $ | ''IH_Q'' | ''TM/TO'' |
|$\xi$ | ''IH_KSI'' | ''TM/TO'' |
===== DoubleSaturatedIsotropicHardening =====
=== Description ===
Double saturated isotropic hardening
$$
\sigma_{vm} = \sigma^{el} + Q_1\left(1-\exp\left(-\xi_1 \bar{\varepsilon}^{vp}\right)\right) + Q_2\left(1-\exp\left(-\xi_2 \bar{\varepsilon}^{vp}\right)\right)
$$
=== Parameters ===
^ Name ^ Metafor Code ^ Dependency ^
|Initial yield stress $\sigma^{el}$ | ''IH_SIGEL'' | ''TM/TO'' |
|$Q_1$ | ''IH_Q1'' | ''TM/TO'' |
|$\xi_1$ | ''IH_KSI1'' | ''TM/TO'' |
|$Q_2$ | ''IH_Q2'' | ''TM/TO'' |
|$\xi_2$ | ''IH_KSI2'' | ''TM/TO'' |
===== RambergOsgoodIsotropicHardening =====
=== Description ===
Ramberg-Osgood isotropic hardening
$$
\sigma_{vm} = \sigma^{el} \left(1+A\, \bar{\varepsilon}^{vp}\right)^{\frac{1}{n}}
$$
=== Parameters ===
^ Name ^ Metafor Code ^ Dependency ^
|Initial yield stress $\sigma^{el}$ | ''IH_SIGEL'' | ''TM/TO'' |
|$A $ | ''IH_A'' | ''TM/TO'' |
|$n $ | ''IH_N'' | ''TM/TO'' |
===== SwiftIsotropicHardening =====
=== Description ===
Swift isotropic hardening (a more common formulation of Ramberg - Osgood)
$$
\sigma_{vm} = \sigma^{el} +B \left(\bar{\varepsilon}^{vp}\right)^{n}
$$
=== Parameters ===
^ Name ^ Metafor Code ^ Dependency ^
|Initial yield stress $\sigma^{el}$ | ''IH_SIGEL'' | ''TM/TO'' |
|$B $ | ''IH_B'' | ''TM/TO'' |
|$n $ | ''IH_N'' | ''TM/TO'' |
===== KrupkowskyIsotropicHardening =====
=== Description ===
Krupkowski isotropic hardening
$$
\sigma_{vm} = K \left(\bar{\varepsilon}^{vp}_{0} + \bar{\varepsilon}^{vp}\right)^{n}
$$
=== Parameters ===
^ Name ^ Metafor Code ^ Dependency ^
| Initial equivalent plastic strain $\bar{\varepsilon}^{vp}_{0}$ | ''IH_EVPL0'' | ''TM/TO'' |
| strength coefficient $K$ | ''IH_K'' | ''TM/TO'' |
| strain hardening exponent $n$ | ''IH_N'' | ''TM/TO'' |
===== Nl8pIsotropicHardening =====
=== Description ===
Nonlinear isotropic hardening with 8 parameters. First one implemented, can be used to do almost everything.
$$
\sigma_{vm} = \left(P_2-P_1\right) \left(1-\exp\left(-P_3\bar{\varepsilon}^{vp}\right)\right) + P_4\left(\bar{\varepsilon}^{vp}\right)^{P_5} +
$$
$$
+ P_1\left(1+P_6\bar{\varepsilon}^{vp}\right)^{P_7} + P_8\bar{\varepsilon}^{vp}
$$
=== Parameters ===
^ Name ^ Metafor Code ^ Dependency ^
|$P_1$ | ''IH_P1'' | ''TM/TO'' |
|$P_2$ | ''IH_P2'' | ''TM/TO'' |
|$P_3$ | ''IH_P3'' | ''TM/TO'' |
|$P_4$ | ''IH_P4'' | ''TM/TO'' |
|$P_5$ | ''IH_P5'' | ''TM/TO'' |
|$P_6$ | ''IH_P6'' | ''TM/TO'' |
|$P_7$ | ''IH_P7'' | ''TM/TO'' |
|$P_8$ | ''IH_P8'' | ''TM/TO'' |
===== FunctIsotropicHardening =====
=== Description ===
Piecewise linear isotropic hardening. A function is associated to the yield stress.
$$
\sigma_{vm} = \sigma^{el} \, * \, f\left(\bar{\varepsilon}^{vp}\right)
$$
=== Parameters ===
^ Name ^ Metafor Code ^ Dependency ^
|Initial yield stress $\sigma^{el}$ | ''IH_SIGEL'' | ''IF_EPL'' |
An [[doc:user:general:fonctions]] must be associated to ''IH_SIGEL'' (depending on ''Field(IF_EPL)'').
===== PowerIsotropicHardening =====
=== Description ===
$$
\sigma_{vm}= P_1 \left[ P_2 \sigma_{vm} + P_3 \overline{\varepsilon}^{vp} \right] ^{P_4}
$$
This law is integrated with an iterative method.
=== Parameters ===
^ Name ^ Metafor Code ^ Dependency ^
|$P_1$ | ''IH_P1'' | ''TM/TO'' |
|$P_2$ | ''IH_P2'' | ''TM/TO'' |
|$P_3$ | ''IH_P3'' | ''TM/TO'' |
|$P_4$ | ''IH_P4'' | ''TM/TO'' |
===== AutesserreIsotropicHardening =====
=== Description ===
"Smatch" isotropic hardening.
$$
\sigma_{vm}= \left( P_1 + P_2 \overline{\varepsilon}^{vp} \right) \left( 1 - P_3 \exp \left( -P_4 \overline{\varepsilon}^{vp}
\right) \right) + P_5
$$
=== Parameters ===
^ Name ^ Metafor Code ^ Dependency ^
|$P_1$ | ''IH_P1'' | ''TM/TO'' |
|$P_2$ | ''IH_P2'' | ''TM/TO'' |
|$P_3$ | ''IH_P3'' | ''TM/TO'' |
|$P_4$ | ''IH_P4'' | ''TM/TO'' |
|$P_5$ | ''IH_P5'' | ''TM/TO'' |
===== GoijaertsIsotropicHardening =====
=== Description ===
"Goijaerts" isotropic hardening
$$
\sigma_{vm}= \sigma_{el} + M_1 \left( 1-\exp(-\frac{\overline{\varepsilon}^{vp}}{M_2})\right) + M_3 \sqrt{\overline{\varepsilon}^{vp}} + M_4 \overline{\varepsilon}^{vp}
$$
=== Parameters ===
^ Name ^ Metafor Code ^ Dependency ^
|$M_1$ | ''IH_M1'' | ''TM/TO'' |
|$M_2$ | ''IH_M2'' | ''TM/TO'' |
|$M_3$ | ''IH_M3'' | ''TM/TO'' |
|$M_4$ | ''IH_M4'' | ''TM/TO'' |
===== KocksMeckingIsotropicHardening =====
=== Description ===
"Kocks-Mecking" isotropic hardening
$$
\sigma_{y} = \sigma_{y}^{0} + \frac{\Theta_{0}}{\beta} [ 1-exp(-\beta \bar{\varepsilon}^{vp}) ]
\;\;\; si \;\;\; \bar{\varepsilon}^{vp} < \bar{\varepsilon}^{vp}_{tr}
$$
$$
\sigma_{y} = \sigma_{y}^{tr} + \Theta_{IV} \left( \bar{\varepsilon}^{vp} - \bar{\varepsilon}^{vp}_{tr}\right) \;\;\; si \;\;\; \bar{\varepsilon}^{vp} >\bar{\varepsilon}^{vp}_{tr}
$$
where the transition yield stress between stages 3 and 4 is defined as
$$
\sigma_{y}^{tr} = \sigma_{y}^{0} + \frac{\Theta_{0}-\Theta_{IV}}{\beta}
$$
and the corresponding yield strain as
$$
\bar{\varepsilon}^{vp}_{tr} = \frac{1}{\beta} \ln \left(\frac{\Theta_{0}}{\Theta_{IV}}\right)
$$
=== Parameters ===
^ Name ^ Metafor Code ^ Dependency ^
|$\sigma_0$ | ''IH_SIGEL'' | ''TM/TO'' |
|$\beta$ | ''KM_BETA'' | ''TM/TO'' |
|$\Theta_{0}$ | ''KM_THETA0'' | ''TM/TO'' |
|$\Theta_{IV}$ | ''KM_THETA4'' | ''TM/TO'' |
===== Python =====
User defined Isotropic Hardening by a pythonDirector :
Python Director allows user to define their own Isotropic Hardening law. Five functions has to be defined in the Python Class :
* a constructor (__init__
),
* a destructor (__del__
) that must never be called,
* computeSvm (epl, pLaw)
* computeH (epl, pLaw)
* computePotential (epl, pLaw) for hyperElastics models
See the example below of a Linear Isotropic Hardening :
class MyIsoH(PythonIsotropicHardening):
def __init__(self, _no, _svm0, _h):
print("MyIsoH : __init__")
PythonIsotropicHardening.__init__(self,_no)
self.svm0 = _svm0
self.h = _h
print("no = ", _no)
print("self.svm0 = ", self.svm0)
print("self.h = ", self.h)
print("MyIsoH : __init__ finished")
print("computeSvm(0.0) = " , self.computeSvm(0.0, None))
def __del__(self):
print("MyIsoH : __del__")
print("callToDestructor of MyIsoH not allowed. Add MyIsoH.__disown__()")
input('')
exit(1)
def computeSvm(self, epl, pLaw) :
#print "MyIsoH compute SVM"
return self.svm0+epl*self.h
def computeH(self, epl, pLaw) :
#print "MyIsoH compute H"
return self.h
def computePotential(self, epl, pLaw) :
#print "MyIsoH compute Potential"
return (self.svm0+self.h*epl*0.5)*epl