====== Hyperelastic materials ====== ===== NeoHookeanHyperMaterial ===== === Description === Neo-Hookean hyperelastic law, using a ''Cauchy'' stress tensor $\boldsymbol{\sigma}$, stress in the current configuration. (Quasi-)incompressibility is treated by a volumetric/deviatoric multiplicative split of the deformation gradient, i.e. $\bar{\mathbf{F}} = J^{-1/3}\mathbf{F}$. Hence the deviatoric potential is based on reduced invariants of $\bar{\mathbf{b}} =\bar{\mathbf{F}}\bar{\mathbf{F}}^T $. $$ W\left(I_1,I_2,J\right) = \bar{W}\left(\bar{I_1},\bar{I_2}\right) + K f\left(J\right) = C_1\left(\bar{I_1} - 3\right) + \frac{k_0}{2}\left[ \left(J-1\right)^2 + \ln^2 J\right] $$ === Parameters === ^ Name ^ Metafor Code ^ | Density |''MASS_DENSITY''| | NeoHookean coefficient ($C_1$) | ''RUBBER_C1'' | | Initial bulk modulus ($k_0$) |''RUBBER_PENAL''| ===== MooneyRivlinHyperMaterial ===== === Description === Mooney-Rivlin hyperelastic law, using a ''Cauchy'' stress tensor $\boldsymbol{\sigma}$, stress in the current configuration. (Quasi-)incompressibility is treated by a volumetric/deviatoric multiplicative split of the deformation gradient, i.e. $\bar{\mathbf{F}} = J^{-1/3}\mathbf{F}$. Hence the deviatoric potential is based on reduced invariants of $\bar{\mathbf{b}} =\bar{\mathbf{F}}\bar{\mathbf{F}}^T $. $$ W\left(I_1,I_2,J\right) = \bar{W}\left(\bar{I_1},\bar{I_2}\right) + K f\left(J\right) = C_1\left(\bar{I_1} - 3\right) + C_2\left(\bar{I_2} - 3\right)+ \frac{k_0}{2}\left[ \left(J-1\right)^2 + \ln^2 J\right] $$ === Parameters === ^ Name ^ Metafor Code ^ | Density |''MASS_DENSITY''| | Mooney-Rivlin coefficient ($C_1$) | ''RUBBER_C1'' | | Mooney-Rivlin coefficient ($C_2$) | ''RUBBER_C2'' | | Initial bulk modulus ($k_0$) |''RUBBER_PENAL''| This material has no analytical material tangent stiffness. The latter should be computed by pertubation (global or material). ===== NeoHookeanHyperPk2Material ===== === Description === Neo-Hookean hyperelastic law, using a ''PK2'' tensor. The potential per unit volume is computed based on the average compressibility over the element, ($\theta$): $$ U^{vol}=\dfrac{k_0}{2} \left[\ln\right(\theta\left)\right]^2 $$ The deviatoric potential is computed based on a Cauchy tensor with a unit determinant: $$ U^{dev}=\dfrac{g_0}{2} \left[\text{tr}\right(\hat{\mathbf{C}}\left)-3\right] $$ === Parameters === ^ Name ^ Metafor Code ^ | Density | ''MASS_DENSITY'' | | Initial bulk modulus ($k_0$) | ''HYPER_K0'' | | Initial shear modulus ($g_0$) | ''HYPER_G0'' | ===== LogarihtmicHyperPk2Material ===== === Description === Logarithmic hyperelastic law, using a ''PK2'' tensor. The potential per unit volume is computed based on the average compressibility of the element, ($q$): $$ U^{vol}=\dfrac{k_0}{2} \left[\ln\right(\theta\left)\right]^2 $$ The deviatoric potential is computed based on a Cauchy tensor with a unit determinant: $$ U^{dev}= \dfrac{g_0}{4} \ln \left(\hat{\mathbf{C}}\right):\ln \left(\hat{\mathbf{C}}\right) $$ === Parameters === ^ Name ^ Metafor Code ^ | Density | ''MASS_DENSITY'' | | Initial bulk modulus ($k_0$) | ''HYPER_K0'' | | Initial shear modulus ($g_0$) | ''HYPER_G0'' | ===== EvpIsoHLogarithmicHyperPk2Material ===== === Description === Logarithmic hyperelastic law, using a ''PK2'' tensor. The potential per unit volume is computed based on the average compressibility of the element, ($\theta$): $$ U^{vol}=\dfrac{k_0}{2} \left[\ln\right(\theta\left)\right]^2 $$ The deviatoric potential is computed based on a Cauchy tensor with a unit determinant: $$ U^{dev}= \dfrac{g_0}{4} \ln \left(\hat{\mathbf{C}}^{el}\right):\ln \left(\hat{\mathbf{C}}^{el}\right) $$ === Parameters === ^ Name ^ Metafor Code ^ Dependency ^ | Density | ''MASS_DENSITY'' | - | | Initial bulk modulus ($k_0$) | ''HYPER_K0'' | - | | Initial shear modulus ($g_0$) | ''HYPER_G0'' | - | | Number of the material law which defines the yield stress $\sigma_{yield}$ | ''YIELD_NUM'' | - | ===== FunctionBasedHyperPk2Material ===== === Description === Hyperelastic law, using a ''PK2'' tensor. Its function applied on the strain spectral decomposition is a user law. The potential per unit volume is computed based on the average compressibility of the element, ($\theta$): $$ U^{vol}=\dfrac{k_0}{2} \left[\ln\right(\theta\left)\right]^2 $$ The deviatoric potential is computed based on a hyperelastic user function defined in [[doc:user:elements:volumes:hyper_viscoelastic]]. === Parameters === ^ Name ^ Metafor Code ^ Dependency ^ | Density | ''MASS_DENSITY'' | - | | Initial bulk modulus ($k_0$) | ''HYPER_K0'' | - | | Number of the hyperelastic law | ''HYPER_FUNCTION_NO'' | - | ===== VeIsoHyperPk2Material ===== === Description === Viscoelastic hyperelastic law, using a ''PK2'' tensor. The law includes a main branch (spring and dashpot in parallel) and one or several Maxwell branches (spring and dashpot in series). Each branch has its behavior corresponding to a viscoelastic law, supplied by the user. The potential per unit volume is computed based on the average compressibility of the element, ($\theta$): $$ U^{vol}=\dfrac{k_0}{2} \left[\ln\right(\theta\left)\right]^2 $$ The deviatoric potential is computed based on the viscoelastic laws : $$ U^{dev}= U^{dev}_{\text{main,elastic}}\left(\hat{C}\right) + \sum_{Maxwell} U^{dev}_{\text{Maxwell,elastic}}\left(\hat{C}^{\text{el}}\right) $$ The dissipation potential is written as: $$ \Delta t \phi^{dev}= \Delta t \phi^{dev}_{\text{main,viscous}}\left( \exp{\frac{\ln{\Delta\hat{C}}}{\Delta t}} \right) + \sum_{Maxwell} \Delta t \phi^{dev}_{\text{Maxwell,viscous}}\left(\exp{\frac{\ln{\Delta C^{\text{vis}}}}{\Delta t}} \right) $$ where $$ \Delta\hat{C} = {\hat{F}^n}^{-T} \hat{C}^{n+1} {\hat{F}^n}^{-1} $$ $$ \Delta C^{\text{vis}} = {{F^{\text{vis}}}^n}^{-T} {C^{\text{vis}}}^{n+1} {{F^{\text{vis}}}^n}^{-1} $$ The potentials $ U^{dev}_{\text{main,elastic}},~~U^{dev}_{\text{Maxwell,elastic}},~~\phi^{dev}_{\text{main,viscous}},~~\phi^{dev}_{\text{Maxwell,viscous}} $ are hyperelastic functions defined in [[doc:user:elements:volumes:hyper_viscoelastic]]. === Parameters === ^ Name ^ Metafor Code ^ Dependency ^ | Density | ''MASS_DENSITY'' | - | | Initial bulk modulus ($k_0$) | ''HYPER_K0'' | - | | Number of the main viscoelastic law | ''MAIN_FUNCTION_NO'' | - | | Number of the first Maxwell viscoelastic law | ''MAXWELL_FUNCTION_NO1'' | - | | Number of the second Maxwell viscoelastic law (optional) | ''MAXWELL_FUNCTION_NO2'' | - | | Number of the third Maxwell viscoelastic law (optional) | ''MAXWELL_FUNCTION_NOI'' | - |