====== Hyperelastic materials ======
===== NeoHookeanHyperMaterial =====
=== Description ===
Neo-Hookean hyperelastic law, using a ''Cauchy'' stress tensor $\boldsymbol{\sigma}$, stress in the current configuration.
(Quasi-)incompressibility is treated by a volumetric/deviatoric multiplicative split of the deformation gradient, i.e. $\bar{\mathbf{F}} = J^{-1/3}\mathbf{F}$. Hence the deviatoric potential is based on reduced invariants of $\bar{\mathbf{b}} =\bar{\mathbf{F}}\bar{\mathbf{F}}^T $.
$$
W\left(I_1,I_2,J\right) = \bar{W}\left(\bar{I_1},\bar{I_2}\right) + K f\left(J\right) = C_1\left(\bar{I_1} - 3\right) + \frac{k_0}{2}\left[ \left(J-1\right)^2 + \ln^2 J\right]
$$
=== Parameters ===
^ Name ^ Metafor Code ^ Dependency ^
| Density | ''MASS_DENSITY'' | ''TO/TM'' |
| NeoHookean coefficient ($C_1$) | ''RUBBER_C1'' | ''TO/TM'' |
| Initial bulk modulus ($k_0$) | ''RUBBER_PENAL'' | ''TO/TM'' |
| Material temperature evolution law | ''TEMP'' | ''TM'' |
| Thermal expansion coefficient ($\alpha$) | ''THERM_EXPANSION'' | ''TO/TM'' |
===== TmNeoHookeanHyperMaterial =====
**Metafor version $\geq$ 3554**
=== Description ===
Neo-Hookean hyperelastic law, using a ''Cauchy'' stress tensor $\boldsymbol{\sigma}$, stress in the current configuration.
Here, the ''TEMP'' parameter is not relevant anymore.
=== Parameters ===
^ Name ^ Metafor Code ^ Dependency ^
| Density | ''MASS_DENSITY'' | ''TO/TM'' |
| NeoHookean coefficient ($C_1$) | ''RUBBER_C1'' | ''TO/TM'' |
| Initial bulk modulus ($k_0$) | ''RUBBER_PENAL'' | ''TO/TM'' |
| Thermal expansion coefficient ($\alpha$) | ''THERM_EXPANSION'' | ''TO/TM'' |
| Conductivity | ''CONDUCTIVITY'' | ''TO/TM'' |
| Heat capacity | ''HEAT_CAPACITY'' | ''TO/TM'' |
| Dissipated thermoelastic power fraction | ''DISSIP_TE'' | - |
| Dissipated (visco)plastic power fraction (Taylor-Quinney factor) | ''DISSIP_TQ'' | - |
===== MooneyRivlinHyperMaterial =====
=== Description ===
Mooney-Rivlin hyperelastic law, using a ''Cauchy'' stress tensor $\boldsymbol{\sigma}$, stress in the current configuration.
(Quasi-)incompressibility is treated by a volumetric/deviatoric multiplicative split of the deformation gradient, i.e. $\bar{\mathbf{F}} = J^{-1/3}\mathbf{F}$. Hence the deviatoric potential is based on reduced invariants of $\bar{\mathbf{b}} =\bar{\mathbf{F}}\bar{\mathbf{F}}^T $.
$$
W\left(I_1,I_2,J\right) = \bar{W}\left(\bar{I_1},\bar{I_2}\right) + K f\left(J\right) = C_1\left(\bar{I_1} - 3\right) + C_2\left(\bar{I_2} - 3\right)+ \frac{k_0}{2}\left[ \left(J-1\right)^2 + \ln^2 J\right]
$$
=== Parameters ===
^ Name ^ Metafor Code ^ Dependency ^
| Density | ''MASS_DENSITY'' | ''TO/TM'' |
| Mooney-Rivlin coefficient ($C_1$) | ''RUBBER_C1'' | ''TO/TM'' |
| Mooney-Rivlin coefficient ($C_2$) | ''RUBBER_C2'' | ''TO/TM'' |
| Initial bulk modulus ($k_0$) | ''RUBBER_PENAL'' | ''TO/TM'' |
| Material temperature evolution law | ''TEMP'' | ''TM'' |
| Thermal expansion coefficient ($\alpha$) | ''THERM_EXPANSION'' | ''TO/TM'' |
**Version < 3554**\\
This material has no analytical material tangent stiffness. The latter should be computed by pertubation (global or material). \\
See ''STIFFMETHOD'' in the element properties of [[doc:user:elements:volumes:volumeelement|Volume elements]].
===== TmMooneyRivlinHyperMaterial =====
**Metafor version $\geq$ 3554**
=== Description ===
Mooney-Rivlin hyperelastic law, using a ''Cauchy'' stress tensor $\boldsymbol{\sigma}$, stress in the current configuration.
Here, the ''TEMP'' parameter is not relevant anymore.
=== Parameters ===
^ Name ^ Metafor Code ^ Dependency ^
| Density | ''MASS_DENSITY'' | ''TO/TM'' |
| Mooney-Rivlin coefficient ($C_1$) | ''RUBBER_C1'' | ''TO/TM'' |
| Mooney-Rivlin coefficient ($C_2$) | ''RUBBER_C2'' | ''TO/TM'' |
| Initial bulk modulus ($k_0$) | ''RUBBER_PENAL'' | ''TO/TM'' |
| Thermal expansion coefficient ($\alpha$) | ''THERM_EXPANSION'' | ''TO/TM'' |
| Conductivity | ''CONDUCTIVITY'' | ''TO/TM'' |
| Heat capacity | ''HEAT_CAPACITY'' | ''TO/TM'' |
| Dissipated thermoelastic power fraction | ''DISSIP_TE'' | - |
| Dissipated (visco)plastic power fraction (Taylor-Quinney factor) | ''DISSIP_TQ'' | - |
===== NeoHookeanHyperPk2Material =====
=== Description ===
Neo-Hookean hyperelastic law, using a ''PK2'' tensor.
The potential per unit volume is computed based on the average compressibility over the element, ($\theta$):
$$
U^{vol}=\dfrac{k_0}{2} \left[\ln\right(\theta\left)\right]^2
$$
The deviatoric potential is computed based on the right Cauchy–Green deformation tensor with a unit determinant:
$$
U^{dev}=\dfrac{g_0}{2} \left[\text{tr}\right(\hat{\mathbf{C}}\left)-3\right]
$$
=== Parameters ===
^ Name ^ Metafor Code ^ Dependency ^
| Density | ''MASS_DENSITY'' | ''TO/TM'' |
| Initial bulk modulus ($k_0$) | ''HYPER_K0'' | ''TO/TM'' |
| Initial shear modulus ($g_0$) | ''HYPER_G0'' | ''TO/TM'' |
| Material temperature evolution law | ''TEMP'' | ''TM'' |
| Thermal expansion coefficient ($\alpha$) | ''THERM_EXPANSION'' | ''TO/TM'' |
===== LogarihtmicHyperPk2Material =====
=== Description ===
Logarithmic hyperelastic law, using a ''PK2'' tensor.
The potential per unit volume is computed based on the average compressibility of the element, ($\theta$):
$$
U^{vol}=\dfrac{k_0}{2} \left[\ln\right(\theta\left)\right]^2
$$
The deviatoric potential is computed based on a Cauchy tensor with a unit determinant:
$$
U^{dev}= \dfrac{g_0}{4} \ln \left(\hat{\mathbf{C}}\right):\ln \left(\hat{\mathbf{C}}\right)
$$
=== Parameters ===
^ Name ^ Metafor Code ^ Dependency ^
| Density | ''MASS_DENSITY'' | ''TO/TM'' |
| Initial bulk modulus ($k_0$) | ''HYPER_K0'' | ''TO/TM'' |
| Initial shear modulus ($g_0$) | ''HYPER_G0'' | ''TO/TM'' |
| Material temperature evolution law | ''TEMP'' | ''TM'' |
| Thermal expansion coefficient ($\alpha$) | ''THERM_EXPANSION'' | ''TO/TM'' |
===== EvpIsoHLogarithmicHyperPk2Material =====
=== Description ===
Logarithmic hyperelastic law, using a ''PK2'' tensor.
The potential per unit volume is computed based on the average compressibility of the element, ($\theta$):
$$
U^{vol}=\dfrac{k_0}{2} \left[\ln\right(\theta\left)\right]^2
$$
The deviatoric potential is computed based on a Cauchy tensor with a unit determinant:
$$
U^{dev}= \dfrac{g_0}{4} \ln \left(\hat{\mathbf{C}}^{el}\right):\ln \left(\hat{\mathbf{C}}^{el}\right)
$$
=== Parameters ===
^ Name ^ Metafor Code ^ Dependency ^
| Density | ''MASS_DENSITY'' | ''TO/TM'' |
| Initial bulk modulus ($k_0$) | ''HYPER_K0'' | ''TO/TM'' |
| Initial shear modulus ($g_0$) | ''HYPER_G0'' | ''TO/TM'' |
| Number of the material law which defines the yield stress $\sigma_{yield}$ | ''YIELD_NUM'' | - |
| Material temperature evolution law | ''TEMP'' | ''TM'' |
| Thermal expansion coefficient ($\alpha$) | ''THERM_EXPANSION'' | ''TO/TM'' |
===== FunctionBasedHyperPk2Material =====
=== Description ===
Hyperelastic law, using a ''PK2'' tensor. Its function applied on the strain spectral decomposition is a user law.
The potential per unit volume is computed based on the average compressibility of the element, ($\theta$):
$$
U^{vol}=\dfrac{k_0}{2} \left[\ln\right(\theta\left)\right]^2
$$
The deviatoric potential is computed based on a hyperelastic user function defined in [[doc:user:elements:volumes:hyper_viscoelastic]].
=== Parameters ===
^ Name ^ Metafor Code ^ Dependency ^
| Density | ''MASS_DENSITY'' | ''TO/TM'' |
| Initial bulk modulus ($k_0$) | ''HYPER_K0'' | ''TO/TM'' |
| Number of the hyperelastic law | ''HYPER_FUNCTION_NO'' | - |
| Material temperature evolution law | ''TEMP'' | ''TM'' |
| Thermal expansion coefficient ($\alpha$) | ''THERM_EXPANSION'' | ''TO/TM'' |
===== VeIsoHyperPk2Material =====
=== Description ===
Viscoelastic hyperelastic law, using a ''PK2'' tensor. The law includes a main branch (spring and dashpot in parallel) and one or several Maxwell branches (spring and dashpot in series).
Each branch has its behavior corresponding to a viscoelastic law, supplied by the user.
The potential per unit volume is computed based on the average compressibility of the element, ($\theta$):
$$
U^{vol}=\dfrac{k_0}{2} \left[\ln\right(\theta\left)\right]^2
$$
The deviatoric potential is computed based on the viscoelastic laws :
$$
U^{dev}= U^{dev}_{\text{main,elastic}}\left(\hat{C}\right) + \sum_{Maxwell} U^{dev}_{\text{Maxwell,elastic}}\left(\hat{C}^{\text{el}}\right)
$$
The dissipation potential is written as:
$$
\Delta t \phi^{dev}= \Delta t \phi^{dev}_{\text{main,viscous}}\left( \exp{\frac{\ln{\Delta\hat{C}}}{\Delta t}} \right) + \sum_{Maxwell} \Delta t \phi^{dev}_{\text{Maxwell,viscous}}\left(\exp{\frac{\ln{\Delta C^{\text{vis}}}}{\Delta t}} \right)
$$
where
$$
\Delta\hat{C} = {\hat{F}^n}^{-T} \hat{C}^{n+1} {\hat{F}^n}^{-1}
$$
$$
\Delta C^{\text{vis}} = {{F^{\text{vis}}}^n}^{-T} {C^{\text{vis}}}^{n+1} {{F^{\text{vis}}}^n}^{-1}
$$
The potentials $ U^{dev}_{\text{main,elastic}},~~U^{dev}_{\text{Maxwell,elastic}},~~\phi^{dev}_{\text{main,viscous}},~~\phi^{dev}_{\text{Maxwell,viscous}} $ are hyperelastic functions defined in [[doc:user:elements:volumes:hyper_viscoelastic]].
=== Parameters ===
^ Name ^ Metafor Code ^ Dependency ^
| Density | ''MASS_DENSITY'' | ''TO/TM'' |
| Initial bulk modulus ($k_0$) | ''HYPER_K0'' | ''TO/TM'' |
| Number of the main viscoelastic law | ''MAIN_FUNCTION_NO'' | - |
| Number of the first Maxwell viscoelastic law | ''MAXWELL_FUNCTION_NO1'' | - |
| Number of the second Maxwell viscoelastic law (optional) | ''MAXWELL_FUNCTION_NO2'' | - |
| Number of the third Maxwell viscoelastic law (optional) | ''MAXWELL_FUNCTION_NOI'' | - |
| Material temperature evolution law | ''TEMP'' | ''TM'' |
| Thermal expansion coefficient ($\alpha$) | ''THERM_EXPANSION'' | ''TO/TM'' |