====== Continuous orthotropic damage ====== The ''ContinousAnisoDamage'' class manages the continuous orthotropic damage evolution laws. When defining a new law, the evolution of the damage variable $\delta H$ must be defined, and so must be its derivatives with respect to pressure, plastic strain and damage. Laws implemented in Metafor ===== AnisoDamageDummy ===== A dummy testing all possible variations of the damage variable. ===== LemaitreChabocheContinuousAnisoDamage ===== Anisotropic extension of [[doc:user:elements:volumes:continuousdamage|Lemaitre isotropic damage law]] === Description === The damage tensor is denoted $D$ $$ \dot D = \left(\dfrac{\tilde\sigma_{eq}^2 R_\nu}{2ES}\right)^s |D^{pl}| \mbox{ if } \varepsilon^{pl} > \varepsilon^{pl}_D $$ where $|D^{pl}|$ is a tensor with the same eigenvectors as $D^{pl}$, and eigenvalues equal to the absolute value of $D^{pl}$ eigenvalues. The triaxiality function is defined as : $$ R_\nu = \dfrac{2}{3}\left(1+\nu\right) + 3\left(1-2\nu\right) \left(\dfrac{p}{\sigma_{eq}}\right)^2 $$ where $ p $ is the pressure and $ \sigma_{eq} $ Von Mises stress. === Parameters === ^ Name ^ Metafor Code ^ Dependency ^ | Young Modulus $ E $ | ''LEMAITRE_E'' | ''TM'' | | Poisson ratio $\nu$ | ''LEMAITRE_NU'' | ''TM'' | | Exponent $ s $ | ''LEMAITRE_SMALL_S'' | ''TM'' | | Coefficient $ S $ | ''LEMAITRE_BIG_S'' | ''TM'' | | Plastic strain threshold $ \varepsilon^{pl}_D $ | ''LEMAITRE_EPL_THRESHOLD'' | ''TM'' | ===== BoneRemodContinuousAnisoDamage ===== This law is used for bone remodeling (extracted from Doblaré's law, used only in elasticity). Damage variation depends mostly on damage, surface available for remodeling and a “remodelling rate” function, which itself depends on stress state. === Description === $$ \dot H =f(H, \rho_0)kS_v(d_h)\dot r $$ where $S_v(d_h)$ is the surface per unit volume available for remodeling (polynomial of degree 5 in $d$), and $d_h$ is the average damage ($d_h = d_{ii}/3$) \begin{align*} \dot r &= c_f(H, \rho_0)g_f\;\;&\text{ if }g_f>0 \\ \dot r &= -c_r(H, \rho_0)g_r\;\;&\text{ if }g_r>0 \end{align*} with \begin{align*} g_f &= N^{1/4}u(\sigma)-(1+\omega)\psi\\ g_r &= -N^{1/4}u(\sigma)+(1-\omega)\psi \end{align*} $ u $ is a measure of the elastic strain energy. - [[http://orbi.ulg.ac.be/handle/2268/126082|cfr p131-132 my thesis]] === Parameters === ^ Name ^ Metafor Code ^ Dependency ^ | Coefficient $ N $ | ''BONE_REMOD_N'' | | Percentage of available surface $ k $ | ''BONE_REMOD_K'' | | Reference elastic strain energy $ \psi $ | ''BONE_REMOD_PSI'' | | Half width of the dead zone $ \omega $ | ''BONE_REMOD_OMEGA'' | | Remodeling speed $ c_f $ | ''BONE_REMOD_CF'' | | Remodeling speed $ c_r $ | ''BONE_REMOD_CR'' | | Density of undamaged material $ \rho_0 $ | ''BONE_REMOD_MASS_DENSITY'' | | "weight" of anisotropy, $ \eta $ | ''BONE_REMOD_ETA'' | ==== AlvBoneRemodContinuousAnisoDamage ==== This law is defined for the remodeling of the alveolar bone. Damage evolution also depends on pressure. cfr [[http://orbi.ulg.ac.be/handle/2268/126082 |p140-142 of my thesis]]